Worksheet -12

Subject: - Mathematics

Class: - VIII

Teacher: - Ms. Neeru

Name: \_\_\_\_\_ Class

\_ Class & Sec: \_\_\_\_\_

\_\_\_\_\_ Roll No. \_\_\_\_\_ Date: \_\_.08.2020

### Question 7:

Ex 6.1

Without adding, find the sum:

- (i) 1+3+5+7+9
- (ii) 1+3+5+7+9+11+13+15+17+19
- (iii) 1+3+5+7+9+11+13+15+17+19+21+23

#### Answer 7:

- (i) Here, there are five odd numbers. Therefore square of 5 is 25.
  - $\therefore$  1 + 3 + 5 + 7 + 9 = 5<sup>2</sup> = 25
- (ii) Here, there are ten odd numbers. Therefore square of 10 is 100.
  - $\therefore 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 = 10^2 = 100$
- (iii) Here, there are twelve odd numbers. Therefore square of 12 is 144.
  - $\therefore$  1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 + 21 + 23 = 12<sup>2</sup> = 144

#### **Question 8:**

- (i) Express 49 as the sum of 7 odd numbers.
- (ii) Express 121 as the sum of 11 odd numbers.

# Answer 8:

- (i) 49 is the square of 7. Therefore it is the sum of 7 odd numbers. 49 = 1 + 3 + 5 + 7 + 9 + 11 + 13
- (ii) 121 is the square of 11. Therefore it is the sum of 11 odd numbers 121 = 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 + 21

#### **Question 9:**

How many numbers lie between squares of the following numbers:

- (i) 12 and 13
- (ii) 25 and 26
- (iii) 99 and 100

## Answer 9:

- (i) Since, non-perfect square numbers between  $n^2$  and  $(n+1)^2$  are 2n. Here, n=12Therefore, non-perfect square numbers between 12 and  $13=2n=2 \times 12 = 24$
- (ii) Since, non-perfect square numbers between  $n^2$  and  $(n+1)^2$  are 2n. Here, n=25Therefore, non-perfect square numbers between 25 and  $26=2n=2 \times 25$
- (iii) Since, non-perfect square numbers between  $n^2$  and  $(n+1)^2$  are 2n. Here, n=99Therefore, non-perfect square numbers between 99 and  $100=2n=2 \times 99$ = 198

# Exercise 6.2

# Question 1:

Find the squares of the following numbers:

- (i) 32
- (ii) 35
- (iii) 86
- (iv) 93
- (v) 71
- (vi) 46

## Answer 1:

(i) 
$$(32)^2 = (30+2)^2 = (30)^2 + 2 \times 30 \times 2 + (2)^2$$
  $\left[\because (a+b)^2 = a^2 + 2ab + b^2\right]$   
= 900 + 120 + 4 = 1024

(ii) 
$$(35)^2 = (30+5)^2 = (30)^2 + 2 \times 30 \times 5 + (5)^2 \quad [\because (a+b)^2 = a^2 + 2ab + b^2]$$
  
= 900 + 300 + 25 = 1225

(iii) 
$$(86)^2 = (80+6)^2 = (80)^2 + 2 \times 80 \times 6 + (6)^2 \quad [\because (a+b)^2 = a^2 + 2ab + b^2]$$
  
= 1600 + 960 + 36 = 7386

(iv) 
$$(93)^2 = (90+3)^2 = (90)^2 + 2 \times 90 \times 3 + (3)^2$$
  $\left[\because (a+b)^2 = a^2 + 2ab + b^2\right]$   
= 8100 + 540 + 9 = 8649

(v) 
$$(71)^2 = (70+1)^2 = (70)^2 + 2 \times 70 \times 1 + (1)^2$$
  $\left[\because (a+b)^2 = a^2 + 2ab + b^2\right]$   
= 4900 + 140 + 1 = 5041

(vi) 
$$(46)^2 = (40+6)^2 = (40)^2 + 2 \times 40 \times 6 + (6)$$
  $[\because (a+b)^2 = a^2 + 2ab + b^2]$   
= 1600 + 480 + 36 = 211.